Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions.

Identifieur interne : 000420 ( Main/Exploration ); précédent : 000419; suivant : 000421

Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions.

Auteurs : Kevin Linka [États-Unis] ; Mathias Peirlinck [États-Unis] ; Francisco Sahli Costabal [Chili] ; Ellen Kuhl [États-Unis]

Source :

RBID : pubmed:32367739

Descripteurs français

English descriptors

Abstract

For the first time in history, on March 17, 2020, the European Union closed all its external borders in an attempt to contain the spreading of the coronavirus 2019, COVID-19. Throughout two past months, governments around the world have implemented massive travel restrictions and border control to mitigate the outbreak of this global pandemic. However, the precise effects of travel restrictions on the outbreak dynamics of COVID-19 remain unknown. Here we combine a global network mobility model with a local epidemiology model to simulate and predict the outbreak dynamics and outbreak control of COVID-19 across Europe. We correlate our mobility model to passenger air travel statistics and calibrate our epidemiology model using the number of reported COVID-19 cases for each country. Our simulations show that mobility networks of air travel can predict the emerging global diffusion pattern of a pandemic at the early stages of the outbreak. Our results suggest that an unconstrained mobility would have significantly accelerated the spreading of COVID-19, especially in Central Europe, Spain, and France. Ultimately, our network epidemiology model can inform political decision making and help identify exit strategies from current travel restrictions and total lockdown.

DOI: 10.1080/10255842.2020.1759560
PubMed: 32367739
PubMed Central: PMC7429245


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions.</title>
<author>
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sahli Costabal, Francisco" sort="Sahli Costabal, Francisco" uniqKey="Sahli Costabal F" first="Francisco" last="Sahli Costabal">Francisco Sahli Costabal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical and Metallurgical Engineering, School of Engineering, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Department of Mechanical and Metallurgical Engineering, School of Engineering, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32367739</idno>
<idno type="pmid">32367739</idno>
<idno type="doi">10.1080/10255842.2020.1759560</idno>
<idno type="pmc">PMC7429245</idno>
<idno type="wicri:Area/Main/Corpus">000763</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000763</idno>
<idno type="wicri:Area/Main/Curation">000763</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000763</idno>
<idno type="wicri:Area/Main/Exploration">000763</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions.</title>
<author>
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sahli Costabal, Francisco" sort="Sahli Costabal, Francisco" uniqKey="Sahli Costabal F" first="Francisco" last="Sahli Costabal">Francisco Sahli Costabal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical and Metallurgical Engineering, School of Engineering, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.</nlm:affiliation>
<country xml:lang="fr">Chili</country>
<wicri:regionArea>Department of Mechanical and Metallurgical Engineering, School of Engineering, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago</wicri:regionArea>
<wicri:noRegion>Santiago</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Computer methods in biomechanics and biomedical engineering</title>
<idno type="eISSN">1476-8259</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Betacoronavirus (MeSH)</term>
<term>COVID-19 (MeSH)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Disease Outbreaks (MeSH)</term>
<term>Europe (epidemiology)</term>
<term>Humans (MeSH)</term>
<term>Pandemics (prevention & control)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Pneumonia, Viral (prevention & control)</term>
<term>Pneumonia, Viral (transmission)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Travel (MeSH)</term>
<term>Travel-Related Illness (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Betacoronavirus (MeSH)</term>
<term>Europe (épidémiologie)</term>
<term>Humains (MeSH)</term>
<term>Infections à coronavirus (prévention et contrôle)</term>
<term>Infections à coronavirus (transmission)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Maladie liée aux voyages (MeSH)</term>
<term>Pandémies (prévention et contrôle)</term>
<term>Pneumopathie virale (prévention et contrôle)</term>
<term>Pneumopathie virale (transmission)</term>
<term>Pneumopathie virale (épidémiologie)</term>
<term>Voyage (MeSH)</term>
<term>Épidémies de maladies (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Europe</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pandemics</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pandémies</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Europe</term>
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Betacoronavirus</term>
<term>COVID-19</term>
<term>Disease Outbreaks</term>
<term>Humans</term>
<term>SARS-CoV-2</term>
<term>Travel</term>
<term>Travel-Related Illness</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Humains</term>
<term>Maladie liée aux voyages</term>
<term>Voyage</term>
<term>Épidémies de maladies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">For the first time in history, on March 17, 2020, the European Union closed all its external borders in an attempt to contain the spreading of the coronavirus 2019, COVID-19. Throughout two past months, governments around the world have implemented massive travel restrictions and border control to mitigate the outbreak of this global pandemic. However, the precise effects of travel restrictions on the outbreak dynamics of COVID-19 remain unknown. Here we combine a global network mobility model with a local epidemiology model to simulate and predict the outbreak dynamics and outbreak control of COVID-19 across Europe. We correlate our mobility model to passenger air travel statistics and calibrate our epidemiology model using the number of reported COVID-19 cases for each country. Our simulations show that mobility networks of air travel can predict the emerging global diffusion pattern of a pandemic at the early stages of the outbreak. Our results suggest that an unconstrained mobility would have significantly accelerated the spreading of COVID-19, especially in Central Europe, Spain, and France. Ultimately, our network epidemiology model can inform political decision making and help identify exit strategies from current travel restrictions and total lockdown.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32367739</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-8259</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Computer methods in biomechanics and biomedical engineering</Title>
<ISOAbbreviation>Comput Methods Biomech Biomed Engin</ISOAbbreviation>
</Journal>
<ArticleTitle>Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions.</ArticleTitle>
<Pagination>
<MedlinePgn>710-717</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/10255842.2020.1759560</ELocationID>
<Abstract>
<AbstractText>For the first time in history, on March 17, 2020, the European Union closed all its external borders in an attempt to contain the spreading of the coronavirus 2019, COVID-19. Throughout two past months, governments around the world have implemented massive travel restrictions and border control to mitigate the outbreak of this global pandemic. However, the precise effects of travel restrictions on the outbreak dynamics of COVID-19 remain unknown. Here we combine a global network mobility model with a local epidemiology model to simulate and predict the outbreak dynamics and outbreak control of COVID-19 across Europe. We correlate our mobility model to passenger air travel statistics and calibrate our epidemiology model using the number of reported COVID-19 cases for each country. Our simulations show that mobility networks of air travel can predict the emerging global diffusion pattern of a pandemic at the early stages of the outbreak. Our results suggest that an unconstrained mobility would have significantly accelerated the spreading of COVID-19, especially in Central Europe, Spain, and France. Ultimately, our network epidemiology model can inform political decision making and help identify exit strategies from current travel restrictions and total lockdown.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Linka</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peirlinck</LastName>
<ForeName>Mathias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sahli Costabal</LastName>
<ForeName>Francisco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical and Metallurgical Engineering, School of Engineering, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuhl</LastName>
<ForeName>Ellen</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 HL119578</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Comput Methods Biomech Biomed Engin</MedlineTA>
<NlmUniqueID>9802899</NlmUniqueID>
<ISSNLinking>1025-5842</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="Y">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005060" MajorTopicYN="N" Type="Geographic">Europe</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014195" MajorTopicYN="N">Travel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076082" MajorTopicYN="N">Travel-Related Illness</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">SEIR model</Keyword>
<Keyword MajorTopicYN="N">epidemiology</Keyword>
<Keyword MajorTopicYN="N">outbreak control</Keyword>
<Keyword MajorTopicYN="N">outbreak dynamics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32367739</ArticleId>
<ArticleId IdType="doi">10.1080/10255842.2020.1759560</ArticleId>
<ArticleId IdType="pmc">PMC7429245</ArticleId>
<ArticleId IdType="mid">NIHMS1589319</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lancet Public Health. 2020 May;5(5):e261-e270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32220655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2019 Jan;25(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30560777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Methods Med Res. 1993;2(1):23-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8261248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jun;92(6):645-659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32141624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Jun;95:311-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32234343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1984 Oct 21;110(4):665-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6521486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NPJ Digit Med. 2019 Nov 25;2:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31799423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2015-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 2020 Mar 13;27(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32052846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomech Model Mechanobiol. 2020 Apr 27;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32342242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 27;367(6485):1436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32217720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2019 Oct 31;16(159):20190356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31615329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Feb 18;9(1):2216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30778107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 1995 Feb;125(2):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2020 Jul;17(168):20200144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32693748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Apr 24;368(6489):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32144116</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Chili</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
</settlement>
<orgName>
<li>Université Stanford</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
</region>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
</country>
<country name="Chili">
<noRegion>
<name sortKey="Sahli Costabal, Francisco" sort="Sahli Costabal, Francisco" uniqKey="Sahli Costabal F" first="Francisco" last="Sahli Costabal">Francisco Sahli Costabal</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000420 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000420 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32367739
   |texte=   Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32367739" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021